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Abstract--The present analysis is presented to predict the heat transfer rate between two natural convection 
systems at different temperatures separated by a vertical plate, where the effects of one-dimensional heat 
conduction along the plate and transverse heat conduction will be discussed. Thus, the countercurrent 
boundary layer flow is formed on the two sides. Governing boundary layer equations with their cor- 
responding boundary conditions for these two natural convection systems are cast into dimensionless forms 
by using the non-similarity transformation. The resulting system of equations is solved by using the 
finite difference approximation for the heat conduction equation and the local non-similarity method in 
conjunction with the Nachtsheim-Swigert iteration scheme for boundary layer equations. Excellent agree- 
ment between the present results predicted by using the approximation of heat conduction along the plate 
and reliable experimental data is obtained. This implies that the present analysis provides accurate pre- 

diction for such problems. 

INTRODUCTION 

The heat transfer mode across a vertical wall sepa- 
rating two semi-infinite fluid reservoirs at different 
temperatures has great practical importance in numer- 
ous thermal engineering applications [1]. Various 
numerical methods have been proposed to analyze 
such problems [1-6]. Lock and Ko [2] analyzed the 
problem of thermal interaction through a wall 
between two free convective systems using the concept 
of local similarity and the method of integration. In 
their study, the effect of plate resistance was not neg- 
ligible. Anderson and Bejan [3] also investigated the 
similar problem. However, the value of the fluid 
Prandtl number, Pr, was assumed to approach infin- 
ity. Accordingly, they applied the modified Oseen 
technique [7] to linearize the energy equation in the 
natural convection system. Furthermore, they con- 
structed an analytical solution without making 
assumptions about the heat flux or temperature dis- 
tribution at the wall. An important conclusion in this 
study [3] was that the vertical wall can be approxi- 
mated as a constant heat flux surface and that the 
overall heat transfer rate is relatively independent of 
Pr provided Pr was ~< 1. Afterward, they also applied 
the similar technique to investigate problems with two 
fluid-saturated porous reservoirs at different tem- 
peratures [4] and a porous reservoir and a fluid 
reservoir at different temperatures [5]. Faghri and 
Sparrow studied the conjugate problem of thin film 
condensation on the outside of a vertical pipe and the 
fully developed forced convection of the cold fluid 
inside the pipe using a simple analysis in conjunction 
with the Runge-Kutta scheme [8]. Viskanta and 
Abrams [1] studied the problem of heat exchange 

between two forced convection systems separated by 
a plate. They presented a general analysis for cocur- 
rent and countercurrent, laminar or turbulent flow. In 
addition, Viskanta and Lankford [9] also applied a 
simple analysis to investigate the thermal coupling of 
heat transfer between two natural convection systems 
separated by a vertical wall of 10.16 cm high and 0.635 
cm thick. In this work [9], they assumed that heat 
conduction along the plate was negligible in com- 
parison to transverse heat conduction. It can be found 
from their results [9] obtained by iteration using 20, 
40 and 100 intervals A(1 for ¢l between 0 and 1, that 
the difference between the calculated and measured 
surface temperatures was greatest near both the ends. 
They [9] thought that this discrepancy was primarily 
attributed to the two-dimensional (2D) heat con- 
duction effects in the plate or was due to the finite size 
of the two chambers. 

The present study proposes a mathematical model 
to investigate the conjugate problem of natural con- 
vection on both sides of a vertical wall problem, which 
has been studied by Lock and Ko [2], Anderson and 
Bejan [3] and Viskanta and Lankford [9]. To obtain 
the more accurate predicted result of such a problem, 
the 2D heat conduction effects in the plate should be 
considered. However, the approximation of the 1D 
heat conduction along the vertical plate is taken into 
account because the aspect ratio (thickness/height) 
t/L is sufficiently small in this study. To the authors' 
knowledge, the predicted results obtained by using the 
approximation of the 1D heat conduction along the 
plate have not yet been found in the literature. Fur- 
thermore, the differences of the surface temperature 
and local Nusselt number along the vertical plate on 
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NOMENCLATURE 

A thermal resistance ratio, equation (18) 
B constant 

.L reduced stream function 
9~ gravitational acceleration 
hx~, h~2 local heat transfer coefficients 
k thermal conductivity 
L height of plate 
Nu~ Nusselt number for the cold fluid. 

equation (29) 
Nu~2 local Nusselt number tbr the cold fluid, 

equation (26) 
Pr, Prandtl number 
q~2 local heat flux through the the plate 

facing the cold reservoir 
Q2 total heat flux through the the plate, 

equation (27) 
Ra~ Rayleigh number, equation (4) 
Ra~2 local Rayleigh number 
R,, R* thermal resistance ratios, equations 

(19) and (22) 
t thickness of plate 
T, fluid temperature in the ith reservoir 
T~ plate temperature 
T~, plate temperature facing the ith 

reservoir 
u, t, velocity components in x- and v- 

directions 
~7, g dimensionless velocity components in 

x- and ),-directions, equation (4) 

.r~, y~ Cartesian coordinates, Fig. 1 
x2.)'2 Cartesian coordinates, Fig. 1 
y*,y* dimensionless horizontal coordinates, 

equation (4). 

Greek symbols 
~-i thermal diffusivity 
[3i coefficient of thermal expansion for the 

ith fluid 
0~ dimensionless fluid temperature, 

equation (4) 
0,, dimensionless plate temperature, 

equation (5) 
0~ dimensionless plate temperature facing 

the ith reservoir, equation (5) 
v, kinematic viscosity 
~J, ~2 dimensionless coordinates, equation 

(4) 
rh, ~h dimensionless parameters, equation 

(7) 
~J, stream function, equation (7). 

Subscripts 
I. 2. i hot, cold, ith fluid 
z, ambient condition 
~r at the plate. 

the cold reservoir obtained by using the approxi- 
mation of transverse heat conduction and 1D heat 
conduction along the plate are also investigated for 
various important parameters in this problem. Due to 
close coupling for this system, all the boundary layer 
equations on the two sides and the 1D heat conduction 
equation for the vertical plate must simultaneously be 
solved by using the two-equation model of the local 
non-similarity method [10] and the finite-difference 
approximation. The main purpose of the present study 
is to investigate the accuracy of the predicted results 
obtained by using the approximation of the 1D heat 
conduction along the plate. Thus its predicted results 
compare with experimental data obtained by Viskanta 
and Lankford [9]. In addition, the effects of the 
Prandtl number on the cold reservoir Pr2, the thermal 
resistance ratios R~ and A on the heat transfer rate 
between two convection systems will also be illus- 
trated. It is worth mentioning that neither the surface 
temperature nor the heat flux through the plate is 
known a priori. Thus an iterative procedure would 
have to be applied. 

MATHEMATICAL FORMULATION 

The physical model of this study with the coordinate 
system is schematically shown in Fig. 1. The exper- 

iments of this study have been made by Viskanta and 
Lankford [9]. In this study, a vertical impermeable 
plate separates two semi-infinite fluid reservoirs at 
different temperatures. T ~  and T2~ respectively 
denote the ambient temperatures in the hot and cold 
reservoirs, where T~ ~ is assumed to exceed T2-,. Thus 
the cooling effect of the cold reservoir is felt from the 
hot reservoir through the vertical plate. At the same 
time, the heating effect of the hot reservoir gives rise 
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Fig. 1. Schematic representation of the system. 
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to an upward flow along the plate in the cold reservoir. 
The above statement implies that two fluid streams of 
this problem move in opposite directions. It is worth 
mentioning that this analysis is restricted to the case 
after steady-state conditions have been reached. In 
addition, it is also assumed that the flow is laminar 
and that physical properties are constant except the 
density in the buoyancy term. Based on the above 
assumptions, this problem can be formulated in terms 
of the boundary layer equations for two different fluid 
streams and heat conduction equation for the plate. 
It is evident that phenomenon of thermal coupling is 
produced by the conducting vertical plate separating 
two boundary layers. 

The dimensionless form of the boundary layer equa- 
tions expressing the conservation of mass, momentum 
and energy for two different fluid streams shown in 
Fig. 1 can respectively be written as 

3a/ 3gi 3¢-~ + 3y-~ *= 0 (1) 

1 /' &7/ &Ti'X O2/d i 
- -  l a / ~  + el ~=.A = o / +  - -  (2 )  
Pr i \ Vgi oy~*j 3yt .2 

.O0i .30/  320i f o r i = l , 2 .  (3) 
u/~-/+v/~-yi,-- aY/* 2 

The dimensionless parameters in equations ( 1 ) - ( 3 )  

are defined as 

y*= g d J % / L  ~, = x , /L  G = x d L =  l - ¢ ,  
~i = uiL/~tiRa~/z ~/ = viL/~tiRa]/4 Pr/ = vd~i 

a n d 0 / =  IT / -T /oo I / (T ,~ -T2~)  (4) 

where Ra/is the Rayleigh number for the ith fluid and 
is defined as Rai = 9~fl/( Tl ~ - T2ov)L 3 /vi~i . 

The corresponding boundary conditions are 

~7/= ~/= 0 0 /=  0w~(~,)(or0~ = 0w(~,)) a ty*= 0 

(5) 

G = O  01=0  a sy*~ov  (6) 

where O~/ = ITwi-- T / ~ I / ( T ~ - -  T2~). T~/ denotes 
the plate temperatures facing the ith fluid. 
O~ = ( T w -  Tz~)/(T~ o~- Tz®). Only the boundary 
condition of 0 /=  0w~(~/) at y*= 0 is given provided 
heat conduction along the vertical plate is neglected. 
However, if the 1D heat conduction along the plate is 
considered, only the boundary condition of 0/--- 0w(~/) 
at y* = 0 will be assumed. 

To apply the two-equation model of the local non- 
similarity method [10] to solve the present problem, 
the dimensionless variable r/~ and reduced stream func- 
tion f are first introduced: 

q,=yf f~] / '  ~k, = f ( ¢ .  r//)~3/% (7) 

It is evident that the stream function ~,~ can be 
obtained from the definition of a~ = 3~ddy* and 
~ = - 3 ~ / 3 ~ / w h i c h  satisfies the continuity equation 
(1). Due to the introduction of the dimensionless par- 
ameters in equations (4) and (7), the remaining partial 

differential equations (2) and (3) can be transformed 
into their corresponding ordinary differential equa- 
tions. The substitution of equations (4) and (7) into 
equations (2) and (3) can yield a set of the dimen- 
sionless forms. 

f i " +  [3f~fi74 -- (f~)2/2]/Pr~ + O~ = ~/(f~#~--f~'yl)/Pr~ 

(8) 

0"+ 3fG/4 = ~,(f~o/--O~#,) (9) 

where 9~ = Of/3~/and ~o/= 30d0~. The primes denote 
differentiation with respect to r//. 

Two additional differential equations can be 
obtained by differentiating equations (8) and (9) with 
respect to ~/. To close the system of boundary layer 
equations at the second-order level, terms involving 
3gd3¢/and 3 ( p i / 3 ~ i  are ignored. Based on this assump- 
tion, these two additional differential equations can 
be expressed as 

g;" + (3fg'/74 + 7g/f'[/4-- 3f~g~)/Pr/ 

+¢p, = ~/(9~ 2 -g'[y,)/Pr~ (10) 

q97+ 3fq~/4 + 7g/O~/4-fTq~/ = ~i(9~q~/- ~o;g/). (11) 

It is evident that equations (8)-(11) constitute a set 
of ordinary differential equations, parameterized in ~. 
The whole set of boundary conditions is given as : 

f = f ' / =  f f i  = ff~ = O, 0 i = O w i ( o r O  i ~-- 0w) at r/~ = 0 

(12) 

(13) 

kw3rw 3r, 
-- ~Y2 = h x l ( T ' ~ - T w ) = k t  oYl y,=0 a t y 2 = - t  

(17) 

where L is the height of the plate, t is the thickness of 
the plate, kw is the thermal conductivity of the plate, 
hx~ and h~z are the local heat transfer coefficients for 
the hot and cold fluids, respectively. 

The local heat transfer coefficients h~ and hx2 to be 
used in the above heat conduction equation are the 
outcome of the solutions of the boundary layer equa- 

(16) 

f ' / =  g~ = 0, 0i --= 0 and ¢p/= 0 as r / /~  

where 0~i and 0w are not known a priori. 
The 2D heat conduction equation with constant 

thermal properties for the plate can be expressed as 

3 2 Tw 3 2 Tw 
Ox~ + 0y~- = 0. (14) 

Its corresponding boundary conditions are : 

3Tw 
= 0atx2 -- 0, L (15) 

Ox2 

3Tw . 0/2 
- k w h - -  = hx2(Tw-T2~) = - k 2 - z ~  aty2 = 0 

oy2 vy2 
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tions, but the thermal boundary conditions cor- 
responding to the boundary layer equations are the 
outcome of the solutions of the heat conduction equa- 
tion. 

If heat conduction along the plate is neglected in 
comparison to transverse heat conduction, the coup- 
lings between heat conduction and boundary layer 
equations can be expressed by using the requirements 
that the heat flux and temperature are continuous 
at the plate-fluid interfaces. The couplings can be 
obtained from equations (14), (16) and (17). 

3T ,  k,, 8T~ 
. = ~ (T,,., - T < )  - k 2  7--  
Q121 I~l=0 :0 

{]8) 

The value of 8Tw/~x2 along the plate is assumed a 
constant value. Based on this assumption, the term 
~2T~/c2X2 in equation (14) can be neglected. However, 
due to the existence of the boundary condition (15), 
this constant value must be zero. This result will lead 
to the assumption of the constant  wall temperature. 
It is found from ref. [9] that the measured natural 
convection heat transfer coefficients are a maximum 
of about 12% higher than those expected for a con- 
stant wall temperature. This implies that it is difficult 
to obtain a more accurate predicted result provided 
the assumption of the constant wall temperature is 
applied. If the boundary conditions at .v~ = 0 and L 
are regarded as singular, namely, the value of ? T,,/Zv~ 
along the plate is not equal to zero except near its two 
ends, the wall temperature will increase almost linearly 
with height. As stated by Viskanta and Lankford [9], 
the wall heat flux is practically constant over about 
80% of the central height for A = 1 and Pr~ = Pr.  
even though the wall temperatures vary significantly 
with the distance along the plate. However, the vari- 
ations of the wall heat flux near the top and the bottom 
of the plate are relatively large. The heat transfer 
coefficients predicted by using this assumption are 
about 5% higher than experimental data. Anderson 
and Bejan [3] were also of the opinion that the vertical 
plate can be approximated as a constant heat flux 
surface. The above statements imply that the approxi- 
mation of transverse heat conduction has better accu- 
racy than that of  an isothermal wall temperature. 
However, it is worth mentioning that, near the two 
ends of the plate, the present boundary layer approxi- 
mations break down, and the wall temperature 
departs from its linear distribution. 

Substituting some dimensionless parameters in 
equation (4) and the definition of 0w2 and 0,,~ into 
equation (18) yields 

c?0, 
0w2 = 0 < -  RtT... (19) 

O.V~ ~.~ = 0 

w h e r e  R t denotes the thermal resistance ratio of the 
plate to the boundary layer for the hot fluid and is 
defined as R~ = (k , /kw)( t /L)Ral(  '4. 

The variation of the wall temperature distribution 
can be approximated by a 1D conducting system pro- 
vided the aspect ratio t /L is sufficiently small. Based 
on this assumption, equation (14) can be simplified as 

d:T,,, 
kwt . . . . .  llxi ( T ~ -  T ~  ) - h x 2 ( T w -  T , ,  ) = O. 

dx~ 

(20) 

Its corresponding boundary conditions of equation 
(20) are 

dTw 
d.\;~- = 0 at x2 = 0, L. (21) 

Substituting equations (16) and (17) and some the 
relatively dimensionless parameters in equations (4) 
and (7) into equation (20) yields 

d-~-0" +R~*A(1 ~2) ' 4 ? 0 '  

+ R , ~ v ' 4 8 0 2  = 0  (22) 
- &12 ,,:r~ 

where A denotes the thermal resistance ratio for 
the two boundary layers and is defined as 
A = (kdk2) (RadRa2)"L  R* can be regarded as the 
thermal resistance ratio of the plate to the boundary 
layer for the cold fluid and is defined as 
R * =  [(k2/kw)(t/L)Ra~ 4](L/t) 2 = Rt(L/ t)2/A.  

The differential form of equation (22) can be written 
a s  

0,,., E--2Ow.l,+Ow.p+l 

+ R ' A ( 1 - ~ 2 . , )  ' 4 0 ] (  l - -~2 ,p ,  VI, = 0)  

i 4 + R ~ > ,  02(g2.,,q2 = 0 )  = 0  f o r p =  1, ".~,...,N 

(23l 

where g2,~ = 0. N denotes the total nodal number  in 
the vertical plate. 

The local heat transfer coefficient h~2 for the cold 
fluid can be expressed as 

c~T, 
Ih2 = k2 ~33'] ~e=o/'[T2(x2,y2 = O) - T2,.] 

= --q~2/[T2(x2,y2 = 0)--  T2:,] (24) 

where q~2 denotes the local heat flux through the 
plate facing the cold fluid and is defined as 
q~_~ = k, (~T,/~?v,)i,..=0. 

The substitution of the dimensionless parameters 
in equation (4) into equation (24) yields the other 
expression of hx2 as 

h~2 = _ [0 i (~2, r/2 : 0)/0w2 ] R a ~ / 4 k 2 / ( L ~ ' 4 ) .  

(25) 
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The local Nusselt number Nux2 for the cold fluid 
can be expressed as 

Nux2 hx2x2 Ra 1/4a'/~ 
- -  x2 t ' 2  ~,%2, ?]2 = 0 ) / 0 w 2  

k2 
o r  

Nux2/Ra~x/24 = - 02 ({z, q2 = 0)/0s. '4 (26) 

where Raxz is the local Rayleigh number for the cold 
fluid and is defined as Raxz = 9 f l ( T w : -  T2oo)x3/v:% 

The total heat flux Q2 through the plate facing the 
cold fluid is obtained by integrating numerically qx2 
over the entire height of the plate can be expressed as 

k a y ~  ,,2=0J 

It can be seen that the local heat flux qx2 is singular 
at 42 = 0 and 1. However, the value of Q2 is finite. Its 
value can be obtained by using the trapezoidal rule. 
The substitution of the dimensionless variables in 
equation (4) into equation (27) can obtain the dimen- 
sionless form of Q2 as 

Q: 
0_.2 - k 2 ( T , ~ -  T2o~,) 

= -- Rail4 f l  02(42' ?/2 = 0)/41/4 d¢2 

= BRa~/4 (28) 

j* where B =  - 02(42,qa = 0)d~2. 
o 

Accordingly, the Nusselt number facing the cold 
fluid can be expressed as 

Nu2 = Q.z = BRa]2 '4. (29) 

Solution procedure 
All the computations are performed on the PC with 

an 80486 microprocessor. The present numerical 
results are obtained by using 51 nodes for the natural 
convection sides and nine nodes in the 42-direction for 
the approximation of transverse heat conduction (or 
25 nodes for the approximation of 1D heat conduc- 
tion). The maximum number of iterations is about 
five times. The computational procedures of solving 
the present problem are listed in the following. 

(1) The boundary layer equations (8)-(11) at 
42 = A42, together with the boundary condition (12) 
and (13), are solved by using the fourth order Runge- 
Kutta method in conjunction with the Nachtsheim- 
Swigert iteration scheme [11] to fulfil the boundary 
conditions at the edge of the boundary layer for the 
natural convection sides. Otherwise, the entire cal- 
culation is repeated until the requirements at the plate 
are satisfied. 

(2) The computational processes of step 1 are 
repeated by advancing in a small space-step A42 until 
~2 = 1 -A42. 

1.0 

0.8 

~ 0.6 

~ 0.4 

0.2 

. . . .  ~ , . . m  ( ~  

- - ~ m m  ( * , , w , m  ~ , t  * * . K ~ )  
, , m . ~  s , . ~ . .  [ o ] j 

¢, 

° ' °o. '  ' o.h ' o.'~ ' oJs ' o.~ ' 1.o 

t~ 
Fig. 2. Comparison of predicted and measured surface tem- 
peratures along the plate for A = 1.01 and Rt = 0.000148. 

(3) The entire computational procedures are fin- 
ished until the wall temperature distribution obtained 
from steps 1 and 2 is convergent. 

R E S U L T S  A N D  D I S C U S S I O N  

The predicted and measured surface temperatures 
[9] facing the cold reservoir are respectively compared 
in Figs. 2-4 for Pr~ = Pr2 = 0.708 and three different 
materials: glass, brass and copper. It can be found 
from Figs. 2 and 3 that the present predicted results 
using the approximation of transverse heat con- 
duction are very close to those given by Viskanta and 
Lankford [9] for the copper and brass plates 
(Rt = 0.000148 and R t = 0.00103). However, Fig. 4 
shows that the present predicted results using the 
approximation of transverse heat conduction are 
closer to experimental data than those given by 
Viskanta and Lankford [9] for the glass plate 

1.0 

o.8 - - - -  P r ~ m  ( ~ m m e  t.mt ~nd,oUo.) 

N,nwk~ So,on [ O ] i 
x x x  [xped, w ~  I ) ~  [ 9 ] ~ '  

~) R, , ,  0.001 

0.2 

| i i 

°'°o.o 0.2 o. ,  o:6 o',  ,.o 
~2 

Fig. 3. Comparison of predicted and measured surface tem- 
peratures along the plate for A = 0.997 and various R t  values. 
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0.8 

I~ 0.6 

0 0.4 

0.2 

. . . . .  ~ ( o ~ - . < , . w ~ a O  

o o o  r ~ m , ~  o~o [ o ] / ~  

°-°o.o ' o.'2 ' o.~ ' o.'6 ' o.'o ' ,.o 

Fig. 4. Comparison of predicted and measured surface tem- 
peratures along the plate for A = 0.97 and Rt = 0.0914. 

1.0 

0.8 

0.6  

®,,2 

0.4 

0.2 

0.00. 

Pr~Nmt 

. . . .  Rof. [9 )  

Rt = 0.1 ~ / / ,  

! 

o.2 o.~ ' o.~ ' o.~ ' 1.o 

Fig. 6. Effect of  R~ on 0w2 for A = 1 and Pr~ = Pr2 = 0.708. 

0.6 

0.5 

a 

0.4 
Z 

0.3 

0.20 

. . . .  ~ (o~,. , . . . .~r, . .r~,,~) 

(~ ,~ , , , ,~ ,~  Mot  c = ' ~ - ' , ~ )  

- -  N.mr~,~ ,So~¢~ ( 0 ] 

xxx Expedmentol Doto [ 9 ] 

" . - - - . - - - . - - - - - - - - . - - - - . - - - - _ _ . _ _ _ _ _ . _ .  

0.2 o.~ ' o *  o.~ 1.0 

Fig. 5. Comparison of predicted and measured local 
Nusselt numbers for A = 0.997, Pr, = Pr2 = 0.708 and 

& = 0.00103. 

(Rt = 0.0914). It is worth mentioning that the pre- 
dictions of  Viskanta and Lankford [9] for the glass 
plate were very close to those for the copper and brass 
plates. At the same time, their calculated results [9] 
are equal to or higher than the present results. The 
engineering importance of  this study is that the present 
predicted results using the approximation of  I D heat 
conduction along the plate are in good agreement with 
experimental data for copper, brass and glass plates 
even near the ends of  the vertical plate. Figure 3 also 
shows that the difference of  the dimensionless surface 
temperatures obtained by using the approximation of  
transverse heat conduction and 1D heat conduction 
along the plate lessens when the value of  Rt increases. 

The comparison of  the predicted and measured 
local Nusselt numbers for A = 0.997 and & = 
0.00103 is shown in Fig. 5. The present results 
using the approximation of  transverse heat con- 

0.5 

0.4 

0,3 

G" 

0,2 

Fig. 

I% = 0,1 . . . . . . ~  

~ _ _  . , - ,  j 

0.1 

0.0 0.( : 

7. Effect 

R~= 10 

]2 i | i ] i ~ i 0 0.4 0.6 0. 1.0 
t= 

o f  R, on 0'2(~2,0) fo r  A =  l and 
Pr~ = Pr2 = 0.708. 

duction are very close to those given by Viskanta and 
Lankford [9]. However, the measured experimental 
data are in good agreement with the present results 
using the approximation of  1D heat conduction and 
are lower than those given by Viskanta and Lankford 
[9]. This conclusion further proves that the present 
method with the approximation of  1D heat con- 
duction has good accuracy for such problems. 

The present predicted results shown in Figs. 6-9 
and Table 1 are obtained by using the approximation 
of  transverse heat conduction. The effect of  R~ 
on the dimensionless surface temperature, 0w2, and 
the dimensionless temperature gradient at q2 = 0, 
0~(~2,0), is shown in Figs. 6 and 7 for A = 1, 
Pr~ = Pr2 = 0.708 and various R t values. The limiting 
case of  R, = 0 corresponds to a plate having no ther- 
mal resistance between the two boundary layers. For  
a fixed value of  A, an increase in parameter R, can 
increase the temperature difference across the plate. 
Thus an increase in R, can yield a more uniform wall 
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'° t 
I ~  - 0.7 

. . . .  P r ~ - 2  ~ /  

0 . 6  P r l - ~  oo 

Od ^--1 ~ _ _ . . . ~  

0.4 ..~. ~ - 

0.2 ~ 

" % ,  ' o J2 ' ' 0.'8 ' o.'8 ' 1.o 
~2 

Fig. 8. Effect of A on 0~2 for R~ = 0.1, Prt = 0.7 and various 
Pr2 values. 

1.0 

Prl  - 0 . 7  

. . . .  Pr= - 2 
0 .8  ~ ~ Pr= -* 

A , = I  ~ 
0.2 ~ - ~-~=. - -=- -=--= . . -=- -=--~- - - ' - - '~  

1 ^-o .1  
O 0  I i i I i i I i I | 

• 0 . 0  0 .2  0 .4  0 .8  0 .8  1.0 

t~ 
Fig. 9. Effect of A on 0~(~2,0) for Rt = 0.1, Pr, = 0.7 and 

various Prz values. 

temperature distribution equal to the ambient tem- 
perature of  the cold reservoir, as shown in Fig. 6. 
Moreover ,  a thicker plate (the increase in Rt) means 
more effective insulation between the two reservoirs. 
This effect that the increase in R t will lead to the 
decrease in the value of  0~(~2,0) is to be expected. 
Figure 6 also shows that the difference of  0w2 between 
the present predicted results and those given by Vis- 

Table 1. Variation of Pr2 with Nu2/Ra~/4 for R, = 0.1, 
Prl = 0.7 and various A values 

Nu2/Ra~/4 

Pr2 A = 10 A = 1 A=0 .1  

0.7 0.4427 0.2122 0.0422 
2 0.4800 0.2222 0.0426 
oo 0.5184 0.2309 0.0429 

kanta and Lankford [9] becomes great for A = 1 when 
the value of  Rt increases, as shown in Fig. 3. 

Figures 8 and 9 show the effect of  the thermal resist- 
ance ratio for the two boundary layers A on 0,2 and 
0~(~2,0) for Rt = 0.1, Prl = 0.708 and various Pr2 
values. Fo r  A < 1, the resistance to heat transfer in 
the cold reservoir is much larger than that in the hot 
reservoir [9]. It is found that the effect of  Pr2 on 0w2 
and 0~(~2,0) for Rt = 0.1, Pr] = 0.708 and A ~< 0.1 is 
negligible. Examining the physical significance of  Pr: 
indicates that the thermal boundary layer thickness in 
the cold reservoir increases with decreasing Pr2. This 
statement implies that 0w2 tends to the ambient tem- 
perature of  the hot  reservoir when Pr2 decreases, as 
shown in Fig. 8. Thus decreasing Pr2 tends to lower 
the heat transfer rate through the plate and leads to 
the decrease in 0~(~2,0). These phenomena can be 
found in Fig. 9. Figures 8 and 9 show that the effect 
of  Pr2 on 0w2 and 02 (~2,0) is considerably weaker than 
that of  A. In addition, it can be found from Fig. 9 that 
the effect of  Pr2 on 0~(~2,0) can be neglected for 
A < 1. However,  its effect is not  negligible for A = 10. 

The effect of  Pr2 on Nu2/Ra~/4 for Prl = 0.7, 
R t = 0.1 and various A values is listed in Table 1. The 
difference of  Nu2/Ra12/4 between Pr2 = 0.7 and Pr2 
oo is about  17% for A = 10. As shown in Fig. 9, these 

results imply that the effect of  Pr: is not negligible for 
A i> 10. However,  Nuz/Ra]S 4 is a weak function of Pr2 
for A ~< 1. Table 1 also shows that the effect of  A on 
Nu2/Ra~/4 is much more pronounced than that of  Pr2. 

CONCLUSIONS 

The present study proposes a more general 
approach to solve the conjugate problem of laminar 
natural convection on both sides of  a vertical plate. 
The engineering importance of  the present study is 
that excellent agreements between the present results 
using the approximation of  1D heat conduction along 
the plate and experimental data are obtained. This 
implies that this model  has good accuracy for such 
problems. The present study also shows that the pre- 
dicted results of  Viskanta and Lankford [9] are very 
close to the present results using the approximation 
of  transverse heat conduction in the plate for smaller 
values of  Rt, such as R t ~< 0.00103 (when A = 1). 
However,  the present results using the approximation 
of  transverse heat conduction tend to approach those 
using the approximation of  1D heat conduction along 
the plate for A = 1 when the value of  Rt increases, 
such as R t /> 0.0914. Another  conclusion of  this study 
is that the effect of  Pr 2 on the heat flux rate through 
the plate is not  negligible for larger values of  A. 
However,  its effect is considerably weaker than that 
of  A. 
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